[link]
Summary by David Stutz 5 years ago
Park et al. introduce adversarial dropout, a variant of adversarial training based on adversarially computing dropout masks. Specifically, instead of training on adversarial examples, the authors propose an efficient method to compute adversarial dropout masks during training. In experiments, this approach seems to improve generalization performance in semi-supervised settings.
Also find this summary at [davidstutz.de](https://davidstutz.de/category/reading/).
more
less